【题目】如图,P是抛物线y=x2﹣4x+3上的一点,以点P为圆心、1个单位长度为半径作⊙P,当⊙P与直线y=0相切时,点P的坐标为 . ![]()
参考答案:
【答案】(2+
,1)或(2﹣
,1)或(2,﹣1)
【解析】解:当y=1时,x2﹣4x+3=1,
解得:x=2±
,
∴P(2+
,1)或(2﹣
,1),
当y=﹣1时,x2﹣4x+3=﹣1,
解得:x1=x2=2,
∴P(2,﹣1),
则点P的坐标为:(2+
,1)或(2﹣
,1)或(2,﹣1).![]()
⊙P与直线y=0相切时就是:⊙P与x轴相切,半径为1个单位长度,即点P的纵坐标|y|=1,根据P是抛物线y=x2﹣4x+3上的一点,代入计算出x的值,并写出点P的坐标,一共有3种可能.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将油箱注满k升油后,轿车行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=
(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶760千米,当平均耗油量为0.08升/千米时,该轿车可以行驶千米. -
科目: 来源: 题型:
查看答案和解析>>【题目】太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是 cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,AC=AE,∠1=∠2,∠C=∠E.求证:BC=DE.
(2)如图2,在△ABC中,AB=AC,D为BC中点,∠BAD=30°,求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知等边△OAB的顶点A在反比例函数y=
(x>0)图象上,当等边△OAB的顶点B在坐标轴上时,求等边△OAB顶点A的坐标和△OAB的面积. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】杂技团进行杂技表演,演员从跷跷板右端A处(OA=1米)弹跳到人梯顶端椅子B处,借助其弹性可以将演员弹跳到离地面最高处点P(
,
)
(1)若将其身体(看成一个点)的路线为抛物线的一部分,求抛物线的解析式.
(2)在一次表演中,已知人梯高BC=3.4米,演员弹跳到最高处点P后落到人梯顶端椅子B处算表演成功,为了这次表演成功,人梯离起跳点A的水平距离OC是多少米?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各小题:
(1)把△ABC向下平移7个单位,再向右平移7个单位,得到△A1B1C1,画出△A1B1C1;
(2)画出△A1B1C1关于x轴对称的△A2B2C2;
画出△A1B1C1关于y轴对称的△A3B3C3;
(3)求△ABC的面积.

相关试题