【题目】如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.
![]()
(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;
(2)填空:
①当DP= cm时,四边形AOBD是菱形;
②当DP= cm时,四边形AOBP是正方形.
参考答案:
【答案】(1)证明见解析;(2)1;
-1.
【解析】
试题分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.
(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.
②要使四边形AOBP是正方形,则必须∠AOP=45°,OA=PA=1,则OP=
,所以DP=OP-1.
试题解析:(1)连接OA,AC
![]()
∵PA是⊙O的切线,
∴OA⊥PA,
在Rt△AOP中,∠AOP=90°-∠APO=90°-30°=60°,
∴∠ACP=30°,
∵∠APO=30°
∴∠ACP=∠APO,
∴AC=AP,
∴△ACP是等腰三角形.
(2)①DP=1,理由如下:
∵四边形AOBD是菱形,
∴OA=AD=OD,
∴∠AOP=60°,
∴OP=2OA,DP=OD.
∴DP=1,
②DP=
-1,理由如下:
∵四边形AOBP是正方形,
∴∠AOP=45°,
∵OA=PA=1,OP=
,
∴DP=OP-1
∴DP=
-1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将某中学九年级组的全体教师按年龄分成三组,情况如下表所示,则表中a的值是_________.
第一组
第二组
第三组
频数
6
10
a
频率
b
c
0.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.

(1)求证:PQ是⊙O的切线;
(2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE=
,求弦AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.
(1)求证:BO⊥CO;
(2)求BE和CG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.3x2y一2x2y=x2y
B.5y一3y=2
C.3a+2b=5ab
D.7a+a=7a2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=120°,连接AC.
(1)求∠A的度数;
(2)若点D到BC的距离为2,那么⊙O的半径是多少?

相关试题