【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.![]()
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=______度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
参考答案:
【答案】(1)900;(2)①α+β=180°;②当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.
【解析】
(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.
(1)90°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)①α+β=180°,
![]()
理由:∵∠BAC=∠DAE,
∴∠BAD+∠DAC=∠EAC+∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∵α+∠B+∠ACB=180°,
∴α+β=180°;
②当点D在射线BC上时,α+β=180°;
理由:∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵在△ABD和△ACE中
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∵∠BAC+∠ABD+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴α+β=180°;
当点D在射线BC的反向延长线上时,α=β.
![]()
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
-
科目: 来源: 题型:
查看答案和解析>>【题目】周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间 x(分)和离家的距离 y(千米)之间的示意图,请根据图像解答下列问题
(1)在上述变化过程中,自变量是 ,因变量是 ;
(2)早餐店到小颖家的距离是 千米,她早餐花了 分钟
(3)出发后37分到55分之间小颖在干什么?
(4)小颖从图书大厦回家的过程中,她的平均速度是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
为
的一条对角线.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母;(保留作图痕迹,不写作法)
①作
的垂直平分线
分别交
,
于
,
两点,交
于点
;②连接
,
;(2)猜想与证明:试猜想四边形
是哪种特殊的四边形,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,与BC相交于点E。
(1)若BC=
,CD=1,求⊙O的半径; (2)取BE的中点F,连结DF,求证:DF是⊙O的切线。

-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
问题解决:
如图1,已知正方形
,
,把含
(
)的直角三角板的一个锐角顶点和点
重合,三角板和正方形的
,
两边分别相交于
,
两点.(1)当
时,求
的长;探究发现:
(2)在图1的基础上,试探究
,
,
有怎样的数量关系,请写出猜想,并给予证明.类比延伸:
(3)如图2,若三角板和正方形
,
两边的延长线分别相交于
,
两点,请直接写出
,
,
存在的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC为直角三角形,∠ACB=90°,AB=5 cm,BC=3 cm,AC=4 cm,△ABC绕点C按逆时针方向旋转90°后得到△DEC,则∠D=______,∠B=________,DE=________cm,CE=______cm,AE=________cm,DB=________cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD的位置如图所示,解答下列问题:
(1)将四边形ABCD先向左平移4格,再向下平移6格,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;
(2)将四边形A1B1C1D1绕点A1逆时针旋转90°得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2.

相关试题