【题目】解方程:x2-3x+2=0
参考答案:
【答案】解答: ∵x2-3x+2=0 ∴(x-1)(x-2)=0,
∴x-1=0或x-2=0,
∴x1=1,x2=2.
【解析】把方程的左边利用十字相乘法因式分解为(x-1)(x-2),再利用积为0的特点求解即可
【考点精析】根据题目的已知条件,利用因式分解法的相关知识可以得到问题的答案,需要掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.(﹣a3)2=﹣a6B.a2a3=a6C.a8÷a2=a4D.3a2﹣2a2=a2
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.四个内角对应相等的两个四边形一定相似
B.四条边对应成比例的两个四边形一定相似
C.一个顶角对应相等的两个等腰三角形相似
D.两条边对应成比例且有一个内角相等的两个三角形相似
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.
(l)求请用树状图列举出三次传球的所有可能情况:
(2)传球三次后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D,F在线段AB上,点E,G分别在线段BC和AC上,CD∥EF,∠1=∠2.

(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=
(k≠o)的图象在第一象限交于点C,如果点B的坐标为(0,2).OA=OB,B是线段AC的中点.(l)求点A的坐标及一次函数解析式;
(2)求点C的坐标及反比例函数的解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小丽经过三次折叠发现了∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

相关试题