【题目】为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:![]()
(1)求图②中“科技类”所在扇形的圆心角α的度数
(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?
(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.
参考答案:
【答案】
(1)
解:“科技类”所占百分比是:1﹣30%﹣10%﹣15%﹣25%=20%,
α=360°×20%=72°
(2)
解:该市2012年抽取的学生一共有300+200=500人,
参加体育类与理财类社团的学生共有500×(30%+10%)=200人
(3)
解:50000×
=28750.
即估计该市2014年参加社团的学生有28750人.
【解析】(1)用1减去其余四个部分所占百分比得到“科技类”所占百分比,再乘以360°即可;
(2)由折线统计图得出该市2012年抽取的学生一共有300+200=500人,再乘以体育类与理财类所占百分比的和即可;
(3)先求出该市2014年参加社团的学生所占百分比,再乘以该市2014年学生总数即可.
【考点精析】认真审题,首先需要了解扇形统计图(能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况),还要掌握折线统计图(能清楚地反映事物的变化情况,但是不能清楚地表示出在总体中所占的百分比)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )

A.1对
B.2对
C.3对
D.4对 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)解不等式:

(2)计算:
÷(a+2﹣
) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上

(1)求斜坡AB的水平宽度BC。
(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。(
≈2.236,结果精确到0.1m) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

(1)试说明DF是⊙O的切线
(2)若AC=3AE,求tanC.
相关试题