【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣
,3),反比例函数y=
的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是( ) ![]()
A.4 ![]()
B.﹣4 ![]()
C.2 ![]()
D.﹣2 ![]()
参考答案:
【答案】B
【解析】解:延长AC交y轴于E,如图, ![]()
∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,
∴AC∥OB,
∴AE⊥y轴,
∵C(﹣
,3),
∴OC=
=2
,∠EOC=30°,
∴∠BOC=60°,
∵四边形OBAC为菱形,
∴∠AOB=∠AOC,OB=OC=2
,AC∥OB,
∴∠COE=30°,
在Rt△BDO中,
∵BD=
OB=2,
∴D点坐标为(﹣2
,2),
∵反比例函数y=
的图象经过点D,
∴k=﹣2
×2=﹣4
,
故选B.
延长AC交y轴于E,由已知得到∠COE=30°,OC=2
如图,根据菱形的性质得AC∥OB,则AE⊥y轴,接着根据菱形的性质得OB=OC=2
,∠BOA=30°,于是在Rt△BDO中可计算出BD=2,所以D点坐标为(﹣2
,2),然后利用反比例函数图象上点的坐标特征可求出k的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:对于平面直角坐标系中的任意直线MN及点P,取直线MN上一点Q,线段PQ与直线MN成30°角的长度称为点P到直线MN的30°角的距离,记作d(P→MN).
已知O为坐标原点,A(4,0),B(3,3)是平面直角坐标系中两点.根据上述定义,解答下列问题:
(1)点A到直线OB的30°角的距离d(A→OB)=;
(2)已知点G到线段OB的30°角的距离d(G→OB)=2,且点G的横坐标为1,则点G的纵坐标为 .
(3)若点A到直线l:y=kx+1的30°角的距离d(A→l)=4,求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE.
(1)如图1,已知AC=BC,AD=2CD,
①△ADE与△ABC面积之比;
②求tan∠ECB的值;
(2)如图2,已知
=
=k,求tan∠ECB的值(用含k的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+bx+3与x轴交于点A(1,0)和点B,与y轴交于点C.

(1)求抛物线的解析式.
(2)直线y=kx+3k经过点B,与y轴的负半轴交于点D,点P为第二象限内抛物线上一点,连接PD,射线PD绕点P顺时针旋转与线段BD交于点E,且∠EPD=2∠PDC,∠EPD的平分线交线段BD于点H,∠BEP+∠BDP=90°
①若四边形PHDC是平行四边形,求点P的坐标;
②过点E作EF⊥PD,交PD于点G,交y轴于点F,已知PF=3
,求直线PF的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B (2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是 .
相关试题