【题目】某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机抽取1名同学单独展示,那么女生展示的概率为 ;
(2)如果随机抽取2名同学共同展示,求同为男生的概率.
参考答案:
【答案】(1)
;(2)
.
【解析】
试题(1)4名学生中女生1名,求出所求概率即可;
(2)列表得出所有等可能的情况数,找出同为男生的情况数,即可求出所求概率.
试题解析:(1)如果随机抽取1名同学单独展示,那么女生展示的概率为
;
(2)列表如下:
男 | 男 | 男 | 女 | |
男 | ﹣﹣﹣ | (男,男) | (男,男) | (女,男) |
男 | (男,男) | ﹣﹣﹣ | (男,男) | (女,男) |
男 | (男,男) | (男,男) | ﹣﹣﹣ | (女,男) |
女 | (男,女) | (男,女) | (男,女) | ﹣﹣﹣ |
所有等可能的情况有12种,其中同为男生的情况有6种,
则P=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线的方程C1:
(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】毕业了,九年级
班同学组织了一次聚会活动,以纪念他们的友谊.有同学提议去野外聚餐,有同学建议全班一起去看一场电影,也有同学希望开展一次有意义的主题班会.由于资金和时间问题,上面三个提议只能采纳两个,因此同学们决定抽签来决定.全班共有
名同学轮流抽签,一共有三张签,签上分别标有
、
、
三个字母.
代表野外聚餐,
代表看电影,
代表开主题班会,每个同学抽两张签后,记下抽取的签然后放回.结束后,将举行抽到次数最多的组合所代表的活动.则这次聚会的活动项目分别是野外聚餐和开展主题班会的概率是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个口袋有
个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了
次,其中
次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是________. -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个布袋中装有2个红球和2个篮球,它们除颜色外其他都相同.
(1)搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;
(2)在这4个球中加入x个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出1个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在0.80,请推算加入的是哪种颜色的球以及x的值大约是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有____.(填序号即可)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
相关试题