【题目】如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m,宽25m,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知ABCD1m,EFGH1m,记甲、乙地块的绿化面积分别为S1、S2,则S1、S2的大小关系是( )
![]()
A.S1<S2B.S1=S2C.S1>S2D.无法确定
参考答案:
【答案】C
【解析】
根据图片,我们可以看到绿化面积就是长方形的面积减去阴影部分的面积,分别求出两个长方形中阴影部分的面积,就可以得出答案.
解:由题意可知:两个图中左右方向的平行四边形小路的面积都是:30×1=30(m),
两个图中上下方向的平行四边形小路的面积都是:25×1=25(m),
图甲中的重叠部分是1×1=1(m),
,
如图,分别做PR∥CD、NS∥CD交QD于R、S,过点N做NO⊥PR于O,
![]()
则
,四边形RSNS是平行西边形,
PR=NS=CD=1m,NO<GH,GH=1m,
在平行四边形PQMN中,PQ∥MN,
,
易证
,
,
,
,
,
;
故答案为:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,
∠A+∠2=90°.求证:AB∥CD.
证明:如图,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,两直线平行)
______________
∴∠AFC+∠2=90°(等式性质)
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(内错角相等,两直线平行)
请你仔细观察下列序号所代表的内容:
①∴∠AOE=90°(垂直的定义)
②∴∠AFB=90°(等量代换)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定义)
⑤∴∠AOE=∠AFB(两直线平行,同位角相等)
横线处应填写的过程,顺序正确的是( )

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y1,x1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(3,2),设A1(x,y),则xy的值是( )
A.-5B.-1C.3D.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+
﹣|2sin45°﹣1|. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,△ABC的三个顶点的位置如图所示.现将△ABC平移,使得点A移至图中的点A'的位置.
(1)平移后所得△ABC的顶点B的坐标为 ,C的坐标为 ;
(2)平移过程中△ABC扫过的面积为 ;
(3)将直线AB以每秒1个单位长度的速度向右平移,则平移 秒时该直线恰好经过点C.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,AB∥CD,点M为直线AB,CD所确定的平面内的一点,若∠A105,∠M108,请直接写出∠C的度数 ;
(2)如图2,AB∥CD,点P为直线AB,CD所确定的平面内的一点,点E在直线CD上,AN平分∠PAB,射线AN的反向延长线交∠PCE的平分线于M,若∠P30,求∠AMC的度数;
(3)如图3,点P与直线AB,CD在同一平面内,AN平分∠PAB,射线AN的反向延长线交∠PCD的平分线于M,若AMC180
P,求证:AB∥CD.
相关试题