【题目】如图,点E,F在函数y=
的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是 . ![]()
参考答案:
【答案】![]()
【解析】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:![]()
∵EP⊥y轴,FH⊥y轴,
∴EP//FH,
∴△BPE∽△BHF,
∴
=
,即HF=3PE,
设E点坐标为(t,
),则F点的坐标为(3t,
),
∵S△OEF+S△OFD=S△OEC+S梯形ECDF ,
而S△OFD=S△OEC=
×2=1,
∴S△OEF=S梯形ECDF=
(
+
)(3t﹣t)=
;
所以答案是:
.
【考点精析】关于本题考查的比例系数k的几何意义,需要了解几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )

A.①③
B.②③
C.②④
D.②③④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF//AD交AC于F.若AB=11,AC=15,则FC的长为( )

A.11
B.12
C.13
D.14 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).
(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;
(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.
(长度均精确到1m,参考数据:
≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)
(1)求主桥AB的长度;
(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:

(1)本次参与调查的人数有人;
(2)关注城市医疗信息的有人,并补全条形统计图;
(3)扇形统计图中,D部分的圆心角是度;
(4)说一条你从统计图中获取的信息.
相关试题