【题目】研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定. 定义:六个内角相等的六边形叫等角六边形.![]()
(1)研究性质 ①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论.
②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论.
③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.
(2)探索判定 三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?
参考答案:
【答案】
(1)解:①结论:AB∥DE,BC∥EF,CD∥AF.
证明:连接AD,如图1,
![]()
∵六边形ABCDEF是等角六边形,∴∠BAF=∠F=∠E=∠EDC=∠C=∠B=
=120°.
∵∠DAF+∠F+∠E+∠EDA=360°,∴∠DAF+∠EDA=360°﹣120°﹣120°=120°.
∵∠DAF+∠DAB=120°,∴∠DAB=∠EDA.∴AB∥DE.
同理BC∥EF,CD∥AF.
②结论:EF=BC,AF=DC.
证明:连接AE、DB,如图2,
![]()
∵AB∥DE,AB=DE,∴四边形ABDE是平行四边形.
∴AE=DB,∠EAB=∠BDE.
∵∠BAF=∠EDC.∴∠FAE=∠CDB.
在△AFE和△DCB中,
.
∴△AFE≌△DCB.
∴EF=BC,AF=DC.
③结论:AB=DE,AF=DC,EF=BC.
延长FE、CD相交于点P,延长EF、BA相交于点Q,延长DC、AB相交于点S,如图3.
![]()
∵六边形ABCDEF是等角六边形,∴∠BAF=∠AFE=120°.∴∠QAF=∠QFA=60°.
∴△QAF是等边三角形.∴∠Q=60°,QA=QF=AF.
同理:∠S=60°,SB=SC=BC;∠P=60°,PE=PD=ED.
∵∠S=∠P=60°,∴△PSQ是等边三角形.∴PQ=QS=SP.
∴QB=QS﹣BS=PS﹣CS=PC.∴AB+AF=AB+QA=QB=PC=PD+DC=ED+DC.
∵AB∥ED,∴△AOB~△DOE.∴
.
同理:
,
.
∴
.
∴
=
=1.
∴AB=ED,AF=DC,EF=BC.
(2)解:连接BF,如图4,
![]()
∵BC∥EF,∴∠CBF+∠EFB=180°.
∵∠A+∠ABF+∠AFB=180°,∴∠ABC+∠A+∠AFE=360°.
同理:∠A+∠ABC+∠C=360°.
∴∠AFE=∠C.
同理:∠A=∠D,∠ABC=∠E.
Ⅰ.若有2个内角等于120°,不能保证该六边形一定是等角六边形.
反例:当∠A=∠D=120°,∠ABC=150°时,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=
(720°﹣120°﹣120°﹣150°﹣150°)=90°.
此时该六边形不是等角六边形.
Ⅱ.若有3个内角等于120°,能保证该六边形一定是等角六边形.
设∠A=∠D=α,∠ABC=∠E=β,∠AFE=∠C=γ.则2α+2β+2γ=720°.∴α+β+γ=360°.
∵有3个内角等于120°,∴α、β、γ中至少有两个为120°.
若α、β、γ都等于120°,则六个内角都等于120°;
若α、β、γ中有两个为120°,根据α+β+γ=360°可得第三个也等于120°,则六个内角都等于120°.
综上所述:至少有3个内角等于120°,能保证该六边形一定是等角六边形.
【解析】(1)通过验证容易得到猜想:三组正对边分别平行.要证明两条线段平行,只需证明同位角相等或内错角相等或同旁内角互补,要证AB∥DE,只需连接AD,证明∠ADE=∠DAB即可,其它两组同理可得.(2)要证BC=EF,CD=AF,只需连接AE、BD,证明△AFE≌△DCB即可.(3)由条件“三条正对角线AD,BE,CF相交于一点O”及(1)中的结论可证到
=
,将等角六边形ABCDEF补成等边三角形后,可以证到AB+AF=DE+DC,从而得到三组正对边分别相等.(4)若只有1个内角为120°或有2个内角为120°,可以通过举反例说明该六边形不一定是等角六边形;若有3个内角为120°,可以通过分类讨论证明该六边形一定是等角六边形.
【考点精析】解答此题的关键在于理解多边形内角与外角的相关知识,掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°,以及对平行四边形的判定与性质的理解,了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:
质量/kg
0.5
0.6
0.7
1.0
1.2
1.6
1.9
数量/条
1
8
15
18
5
1
2
然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.
(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).
(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg). -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本). ①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?
(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为( )

A.50秒
B.45秒
C.40秒
D.35秒 -
科目: 来源: 题型:
查看答案和解析>>【题目】把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是 .
相关试题