【题目】如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点. ![]()
(1)求证:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求线段AE的长.
参考答案:
【答案】
(1)证明:∵四边形ABCD是菱形,
∴AB=BC=AD=CD,∠B=∠D,
∵点E、F分别是边BC、AD的中点,
∴BE=DF,
在△ABE和△CDF中,
∵
,
∴△ABE≌△CDF(SAS);
(2)解:∵∠B=60°,
∴△ABC是等边三角形,
∵点E是边BC的中点,
∴AE⊥BC,
在Rt△AEB中,∠B=60°,AB=4,
sin60°=
,
解得AE=2
.
【解析】(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF;(2)首先证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.
【考点精析】认真审题,首先需要了解菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半).
-
科目: 来源: 题型:
查看答案和解析>>【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图1)补充完整;
(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】将正整数1至2018按一定规律排列如下表:

平移表中带阴影的方框,方框中三个数的和可能是( )
A. 2018 B. 2019 C. 2040 D. 2049
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读并填空:
寻求某些勾股数的规律:
⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:
,我们把它扩大2倍、3倍,就分别得到
和
,……若把它扩大11倍,就得到 ,若把它扩大n倍,就得到 .⑵对于任意一个大于1的奇数,存在着下列勾股数:
若勾股数为3,4,5,因为,则有
;若勾股数为5,12,13,则有
;若勾股数为7,24,25,则有 ;……
若勾股数为m(m为奇数),n, ,则有m2= ,用m来表示n= ;
当m=17时,则n= ,此时勾股数为 .
⑶对于大于4的偶数:
若勾股数为6,8,10,因为
,则有……请找出这些勾股数之间的关系,并用适当的字母表示出它的规律来,并求当偶数为24的勾股数. -
科目: 来源: 题型:
查看答案和解析>>【题目】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.
(1)该城市是否会受到这交台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为4厘米,动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿拆线BC-CD以2厘米/秒的速度匀速移动。点P、Q同时出发,当点P停止运动,点Q也随之停止。联结AQ交BD于点E。设点P运动时间为t秒。
(1)用t表示线段PB的长;
(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;
(3)当t为何值时,线段P、Q之间的距离为2
cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义三个有理数之间的新运算法则“⊕”:a⊕b⊕c=
(|a﹣b﹣c|+a+b+c),如:1⊕(﹣2)⊕3=
[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=l,在﹣2,﹣4,﹣5,0,2,5,6这7个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c“运算,求在所有计算的结果中的最大值是_____.
相关试题