【题目】在2018年韶关市开展的“善美韶关情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
参考答案:
【答案】每件乙种商品的价格为60元,每件甲种商品的价格为70元
【解析】
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
解:
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
根据题意得:
,
解得:x=70,
经检验,x=70是原方程的解,
∴x﹣10=60.
答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.
(1)求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?
(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
经过点E(1,0)和F(5,0),并交y轴于D(0,-5);抛物线
:
(a≠0),(1)试求抛物线
的函数解析式;(2)求证: 抛物线
与x轴一定有两个不同的交点;(3)若a=1
①抛物线
、
顶点分别为 ( , )、( , ) ;当x的取值范围是_________ 时,抛物线
、
上的点的纵坐标同时随横坐标增大而增大;②已知直线MN分别与x轴、
、
分别交于点P(m,0)、M、N,且MN∥y轴,当1≤m≤5时,求线段MN的最大值。 -
科目: 来源: 题型:
查看答案和解析>>【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若AB=6,BC=8,求AF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】因为一次函数
与
的图象关于
轴对称,所以我们定义:函数
与互为
“镜子”函数.(1)请直接写出函数
的“镜子”函数:________.(2)如图,一对“镜子”函数
与
的图象交于点
,分别与
轴交于
两点,且AO=BO,△ABC的面积为
,求这对“镜子”函数的解析式.
相关试题