【题目】若抛物线L:
(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线
具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数
的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足
≤k≤2时,求抛物线L:
的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
参考答案:
【答案】(1)m=﹣1,n=1;(2)
或
;(3)
≤S≤
.
【解析】
试题分析:(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;
(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;
(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.
试题解析:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);
将(0,1)代入抛物线
中,得n=1.
∵抛物线的解析式为
=
,∴抛物线的顶点坐标为(1,0).
将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.
答:m=﹣1,n=1.
(2)将y=2x﹣4代入到
中有,2x﹣4=
,即
,解得:
,
,∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).
令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).
设该“路线”L的解析式为
或
,由题意得:
或
,解得:m=2,n=
,∴此“路线”L的解析式为
或
.
(3)令抛物线L:
中x=0,则y=k,即该抛物线与y轴的交点为(0,k).
抛物线L:
的顶点坐标为(
,
),设“带线”l的解析式为y=px+k,∵点(
,
)在y=px+k上,∴
,解得:p=
,∴“带线”l的解析式为
.
令∴“带线”l:
中y=0,则
,解得:x=
.
即“带线”l与x轴的交点为(
,0),与y轴的交点为(0,k),∴“带线”l与x轴,y轴所围成的三角形面积S=
=
=
=
=
,∵
≤k≤2,∴
≤
≤2,∴S=
,当
=1时,S有最大值,最大值为
;当
=2时,S有最小值,最小值为
.
故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为
≤S≤
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.
(1)请写出AB的中点M对应的数
(2)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请你求出C点对应的数
(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数. -
科目: 来源: 题型:
查看答案和解析>>【题目】有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润
(万元)与投资成本x(万元)满足如图①所示的二次函数
;种植柏树的利润
(万元)与投资成本x(万元)满足如图②所示的正比例函数
=kx.
(1)分别求出利润
(万元)和利润
(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各对数中,相等的一对数是( )
A.(﹣2)3与﹣23
B.﹣22与(﹣2)2
C.﹣(﹣3)与﹣|﹣3|
D.
与(
)2 -
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系内,点M(a+3,a-2)在y轴上,则点M的坐标是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若(
☆3)☆(-
)=8,求a的值;
(3)若2☆x=m,(
x)☆3=n(其中x为有理数),试比较m,n的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】科技馆是少年儿童节假日游玩的乐园.
如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为
,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

相关试题