【题目】哈市某中学为了解学生的课余生活情况,学校决定围绕“在欣赏音乐、读课外书、体育运动.其他活动中,你最喜欢的课余生活种类是什么?(只写一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢欣赏音乐的学生占被抽取人数的12%,请你根据以上信息解答下列问题: ![]()
(1)在这次调查中,一共抽取了多少名学生?
(2)最喜欢读课外书的学生占被抽取人数的百分数是多少?
(3)如果全校有1000名学生,请你估计全校最喜欢体育运动的学生约有多少名?
参考答案:
【答案】
(1)解:6÷12%=50(名)
∴在这次调查中,一共抽取了50名学生;
(2)解:50﹣6﹣20﹣8=16(名)
![]()
∴最喜欢读课外书的学生占被抽取人数的32%;
(3)解:1000×
(名)
∴估计全校最喜欢体育运动的学生约有400名.
【解析】(1)因为最喜欢欣赏音乐的学生有6人,所占百分比为12%,即可求出调查总人数;(2)求出最喜欢读课外书的学生的人数,再除以总人数即可求解;(3)用全校总人数乘以最喜欢体育运动的学生所占百分比即可求得结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+(
)﹣1﹣2cos60°+(2﹣π)0 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.

(1)请在图中画出△COD;
(2)求点A旋转过程中所经过的路程(精确到0.1). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA、PB分别相切于点A、B,不倒翁的鼻尖正好是圆心O,若∠OAB=25°,求∠APB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

(1)汽车行驶小时后加油,中途加油升;
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】【问题引入】 已知:如图BE、CF是△ABC的中线,BE、CF相交于G.求证:
=
=

证明:连结EF
∵E、F分别是AC、AB的中点
∴EF∥BC且EF=
BC
∴
=
=
=
【思考解答】
(1)连结AG并延长AG交BC于H,点H是否为BC中点(填“是”或“不是”)
(2)①如果M、N分别是GB、GC的中点,则四边形EFMN 是四边形. ②当
的值为时,四边形EFMN 是矩形.
③当
的值为时,四边形EFMN 是菱形.
④如果AB=AC,且AB=10,BC=16,则四边形EFMN的面积S= . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.

(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.
①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
②试问在抛物线的对称轴上是否存在一点T,使得|TO﹣TB|的值最大?
相关试题