【题目】如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形;当t=_______s时,△POQ是直角三角形.
![]()
参考答案:
【答案】
或10
【解析】
根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,或点P在BO上;根据△POQ是直角三角形,分两种情况进行讨论:PQ⊥AB,或PQ⊥OC,据此进行计算即可.
如图,当PO=QO时,△POQ是等腰三角形
![]()
∵PO=AOAP=102t,OQ=1t
∴当PO=QO时,102t=t
解得t=
;
如图,当PO=QO时,△POQ是等腰三角形
![]()
∵PO=APAO=2t10,OQ=1t
∴当PO=QO时,2t10=t
解得t=10;
如图,当PQ⊥AB时,△POQ是直角三角形,且QO=2OP
![]()
∵PO=APAO=2t10,OQ=1t,
∴当QO=2OP时,t=2×(2t10)
解得t=
;
如图,当PQ⊥OC时,△POQ是直角三角形,且2QO=OP
![]()
∵PO=APAO=2t10,OQ=1t,
∴当2QO=OP时,2t=2t10
方程无解.
故答案为:(1).
或10 (2). ![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表中有两种移动电话计费方式:
月使用费
主叫限定时间(分钟)
主叫超时费(元/分钟)
被叫
方式一
65
160
0.20
免费
方式二
100
380
0.25
免费
(月使用费固定收;主叫不超过限定的时间不再收费,主叫超过限定时间的部分加收超时费;被叫免费)
(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____
元;李华某月按方式二计费需107元,则李华该月主叫通话时间为_____分钟;
(2)是否存在某主叫通话时间
(分钟),按方式一和方式二的计费相等?若存在,请求出
的值;若不存在,请说明理由。(3)直接写出当月主叫通话时间
(分钟)满足什么条件时,选择方式一省钱。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).
(1)如图1,若∠COF=28°,则∠BOE=______°;若∠COF=
则∠BOE=_______;∠BOE与∠COF的数量关系为_________;(2)将∠COE绕点O逆时针旋转到如图2所示的位置时,(1)中∠BOE和∠COF的数量关系否仍然成立?若成立,请说明理由?若不成立,求出∠BOE与∠COF的数量关系;
(3)当∠COE绕点O顺时针旋转到如图3的位置时,(1)中∠BOE和∠COF的数量关系是否仍然成立?若成立,请说明理由;若不成立,请求出∠BOE与∠COF的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=
x+4,与x轴相交于点D.
(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )

A.﹣4+4
B.4
+4
C.8﹣4
D.
+1 -
科目: 来源: 题型:
查看答案和解析>>【题目】点A在数轴上对应的数为
点B对应的数为
且
满足
(1)线段AB的长为________;
(2)点C在数轴上对应的数为10,在数轴上是否存在点D,使得DA+DB=DC?若存在,求出点D对应的数;若不存在,说明理由。
(3)动点P从点A出发,以每秒6个单位长度的速度沿数轴向左均速运动;动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左移动;动点M从点A出发,以每秒3个单位长度的速度沿数轴向左均速移动,点P、Q、M同时出发,设运动时间为
秒,当
时,探究QP、QA、QM三条线段之间的数量关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)直接写出点A1,B1,C1的坐标.
A1 , B1 , C1 ;
(3)请你求出△A1B1C1的面积.

相关试题