【题目】如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( ) ![]()
A.﹣4+4 ![]()
B.4
+4
C.8﹣4 ![]()
D.
+1
参考答案:
【答案】A
【解析】解:∵四边形ABCD是正方形, ∴∠D=90°,∠ACD=45°,AD=CD=2,
则S△ACD=
ADCD=
×2×2=2;
AC=
AD=2
,
则EC=2
﹣2,
∵△MEC是等腰直角三角形,
∴S△MEC=
MEEC=
(2
﹣2)2=6﹣4
,
∴阴影部分的面积=S△ACD﹣S△MEC=2﹣(6﹣4
)=4
﹣4.
故选:A.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE(图中所说的角都是小于平角的角).
(1)如图1,若∠COF=28°,则∠BOE=______°;若∠COF=
则∠BOE=_______;∠BOE与∠COF的数量关系为_________;(2)将∠COE绕点O逆时针旋转到如图2所示的位置时,(1)中∠BOE和∠COF的数量关系否仍然成立?若成立,请说明理由?若不成立,求出∠BOE与∠COF的数量关系;
(3)当∠COE绕点O顺时针旋转到如图3的位置时,(1)中∠BOE和∠COF的数量关系是否仍然成立?若成立,请说明理由;若不成立,请求出∠BOE与∠COF的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=
x+4,与x轴相交于点D.
(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形;当t=_______s时,△POQ是直角三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点A在数轴上对应的数为
点B对应的数为
且
满足
(1)线段AB的长为________;
(2)点C在数轴上对应的数为10,在数轴上是否存在点D,使得DA+DB=DC?若存在,求出点D对应的数;若不存在,说明理由。
(3)动点P从点A出发,以每秒6个单位长度的速度沿数轴向左均速运动;动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左移动;动点M从点A出发,以每秒3个单位长度的速度沿数轴向左均速移动,点P、Q、M同时出发,设运动时间为
秒,当
时,探究QP、QA、QM三条线段之间的数量关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)直接写出点A1,B1,C1的坐标.
A1 , B1 , C1 ;
(3)请你求出△A1B1C1的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中阴影部分的面积为 ;
(2)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 ;
(3)根据(2)中的结论,若x+y=5,xy=4,求x﹣y的值.

相关试题