【题目】计算:
(1)|-1|+(-2)3+(7-π)0-(-
)-2
(2)(-2x2)3+x2x4-(-3x3)2
(3)(p-q)4·(q-p)3·(p-q)2
(4)已知am=2,an=4,求a3m+2n.
参考答案:
【答案】(1)-15;(2)-16x6;(3)(q-p)9;(4)128.
【解析】
试题分析:(1)先算乘方,0指数幂,负整数指数幂以及绝对值,再算加减;
(2)先利用积的乘方和同底数幂的乘法计算,进一步合并得出答案即可;
(3)利用同底数幂的乘法的计算方法计算即可;
(4)利用同底数的乘法和幂的乘方变形,代入计算得出答案即可.
试题解析:(1)原式=1-8+1-9=-15;
(2)原式=-8x6+x6-9x6=-16x6;
(3)原式=(q-p)9;
(4)∵am=2,an=4,
∴a3m+2n.
=(am)3(an)2
=8×16
=128.
-
科目: 来源: 题型:
查看答案和解析>>【题目】课本拓展
旧知新意:
我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
1.尝试探究:
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?
2.初步应用:
(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C= ;
(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案 .
3拓展提升:
(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了直方图和扇形统计图.请解决以下问题:

(1)求抽取的部分同学的人数;
(2)补全直方图的空缺部分;
(3)若七年级有200名学生,估计该年级去敬老院的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.

(1)求证:OE=OF.
(2)当∠DOE等于 度时,四边形BFDE为菱形。(直接填写答案即可)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°.因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米?(精确到0.1)
(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
相关试题