【题目】新学期开学,某体育用品商店开展促销活动,有两种优惠方案.
方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.
方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:
![]()
会员卡只限本人使用.
(1)求该商店销售的乒乓球拍每副的标价.
(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,请回答下列问题:
①如果方案一与方案二所付钱数一样多,求a的值;
②直接写出一个恰当的a值,使方案一比方案二优惠;
③直接写出一个恰当的a值,使方案二比方案一优惠.
参考答案:
【答案】(1)该商店销售的乒乓球拍每副的标价为40元;
(2)①购买16盒乒乓球时,方案一与方案二所付钱数一样多;
②购买5(1~15之间的整数即可)盒乒乓球时,方案一比方案二优惠;
③购买20(任意大于16的整数即可)盒乒乓球时,方案二比方案一优惠.
【解析】试题分析:(1)设该商店销售的乒乓球拍每副的标价为x元,根据:4副球拍的原价比办会员卡多花12元列方程进行求解即可得;
(2)分别表示出方案一与方案二的费用,然后进行比较即可得到①、②、③的结果.
试题解析:(1)设该商店销售的乒乓球拍每副的标价为x元,
根据题意得:4x﹣(20+0.8×4x)=12,
解得:x=40.
答:该商店销售的乒乓球拍每副的标价为40元;
(2)①根据题意得:0.8×(6×40+10a)+20=0.85×(6×40+10a),
解得:a=16,
答:购买16盒乒乓球时,方案一与方案二所付钱数一样多;
②根据题意得:0.8×(6×40+10a)+20>0.85×(6×40+10a),
解得:a<16,
答:购买5(1~15之间的整数即可)盒乒乓球时,方案一比方案二优惠;
③根据题意得:0.8×(6×40+10a)+20<0.85×(6×40+10a),
解得:a>16,
答:购买20(任意大于16的整数即可)盒乒乓球时,方案二比方案一优惠.
-
科目: 来源: 题型:
查看答案和解析>>【题目】这次数学实践课上,同学进行大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为37°,然后沿在同一剖面的斜坡AB行走5
米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度i=1:2(通常把坡面的垂直高度h和水平宽度l的比叫做坡度,即tanα值(α为斜坡与水平面夹角),那么大树CD的高度约为(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )
A.7米
B.7.2米
C.9.7米
D.15.5米 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是( )

A. ①②④ B. ②③④
C. ①②③ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】AB是⊙O的直径,弦CD垂直于AB交于点E,∠COB=60°,CD=2
,则阴影部分的面积为( ) 
A.
B.
C.π
D.2π -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:
运输工具
途中平均速度(千米/时)
运费(元/千米)
装卸费用(元)
火车
100
15
2000
汽车
80
20
900
(1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.
(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是某市水果批发部门的经理,要将这种水果从A市运往本市销售。你将选择哪种运输方式比较合算呢?
相关试题