【题目】在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1 , 作P1关于点B的对称点P2 , 作点P2关于点C的对称点P3 , 作P3关于点D的对称点P4 , 作点P4关于点A的对称点P5 , 作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( ) ![]()
A.(0,2)
B.(2,0)
C.(0,﹣2)
D.(﹣2,0)
参考答案:
【答案】D
【解析】解:∵作点P关于点A的对称点P1 , 作P1关于点B的对称点P2 , 作点P2关于点C的对称点P3 , 作P3关于点D的对称点P4 , 作点P4关于点A的对称点P5 , 作P5关于点B的对称点P6┅,按如此操作下去, ∴每变换4次一循环,
∴点P2011的坐标为:2011÷4=502…3,
点P2011的坐标与P3坐标相同,
∴点P2011的坐标为:(﹣2,0),
故选:D.![]()
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.

(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP(图2)的夹角记为y1 , 时针与OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:
请你完成:

(1)求出图3中y2与t的函数关系式;
(2)直接写出A、B两点的坐标,并解释这两点的实际意义;
(3)若小华继续观察一个小时,请你在题图3中补全图象. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.
(1)当t=1时,正方形EFGH的边长是 . 当t=3时,正方形EFGH的边长是 .
(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数
,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2 , 则y1、y2必须满足( )
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC= , CD= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:


(1)在这次调查活动中,一共调查了名学生;
(2)“足球”所在扇形的圆心角是度;
(3)补全折线统计图.
相关试题