【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是 . ![]()
参考答案:
【答案】6
【解析】解:Rt△ABC中,由勾股定理求AB=
=10, 由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,
∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,
∴∠A′=∠A,∠A′DE=∠C=90°,
∴△A′DE∽△ACB,
∴
=
,即
=
,解得x=3,
∴S△A′DE=
DE×A′D=
×(10﹣2×3)×3=6,
故答案为:6.
在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=10﹣2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(I)试用含t的式子表示AE、AD、DF的长;
(Ⅱ)如图①,连接EF,求证:四边形AEFD是平行四边形;
(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B在反比例函数y=
(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,直线
:
分别与x轴、y轴交于点A、点B,且与直线
:
于点C.
Ⅰ
如图
,求出B、C两点的坐标;
Ⅱ
若D是线段OC上的点,且
的面积为4,求直线BD的函数解析式.
Ⅲ
如图
,在
Ⅱ
的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.


(1)如图1,当∠COE=40°时,求∠AOB的度数;
(2)当OE⊥OA时,请在图中画出射线OE,OB,并直接写出∠AOB的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】5月31日是世界无烟日.某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18﹣65岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:

(1)这次接受随机抽样调查的市民总人数为;
(2)图1中的m的值是;
(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;
(4)若该市18﹣65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是“对吸烟危害健康认识不足”的人数.
相关试题