【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A,B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.![]()
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
参考答案:
【答案】
(1)解:∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),
∴
,解得
,
∴抛物线的解析式为y=﹣
x2+
x+4
![]()
(2)解:设直线AC的解析式为y=kx+b,
∵A(3,0),点C(0,4),
∴
,解得
,
∴直线AC的解析式为y=﹣
x+4.
∵点M的横坐标为m,点M在AC上,
∴M点的坐标为(m,﹣
m+4),
∵点P的横坐标为m,点P在抛物线y=﹣
x2+
x+4上,
∴点P的坐标为(m,﹣
m2+
m+4),
∴PM=PE﹣ME=(﹣
m2+
m+4)﹣(﹣
m+4)=﹣
m2+4m,
即PM=﹣
m2+4m(0<m<3)
(3)解:在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:
由题意,可得AE=3﹣m,EM=﹣
m+4,CF=m,若以P、C、F为顶点的三角形和△AEM相似,P点在F上,PF=﹣
m2+
m+4﹣4=﹣
m2+
m.情况:
①若△PFC∽△AEM,则PF:AE=FC:EM,
即(﹣
m2+
m):(3﹣m)=m:(﹣
m+4),
∵m≠0且m≠3,
∴m=
.
∵△PFC∽△AEM,
∴∠PCF=∠AME,
∵∠AME=∠CMF,
∴∠PCF=∠CMF.
在直角△CMF中,
∵∠CMF+∠MCF=90°,
∴∠PCF+∠MCF=90°,即∠PCM=90°,
∴△PCM为直角三角形;
②若△CFP∽△AEM,则CF:AE=PF:EM,
即m:(3﹣m)=(﹣
m2+
m):(﹣
m+4),
∵m≠0且m≠3,
∴m=1.
∵△CFP∽△AEM,
∴∠CPF=∠AME,
∵∠AME=∠CMF,
∴∠CPF=∠CMF.
∴CP=CM,
∴△PCM为等腰三角形.
综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为
或1,△PCM为直角三角形或等腰三角形.
【解析】(1)把AC两点坐标代入解析式即可;(2)竖直线段的长等于上纵减下纵,用m的代数式表示P、M的纵坐标,二者相减即可;(3)两三角形的相似须分类讨论:△PFC∽△AEM或△CFP∽△AEM;由边方面的关系相等或角之间的关系可判定△PCM为直角三角形或等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC=5,cos∠ABC=
,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 , 求线段EF1长度的最大值与最小值的差.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,a∥b,则∠1+∠2=
(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由
(3)如图3,a∥b,则∠1+∠2+∠3+∠4=
(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为( )

A.27°B.59°C.69°D.79°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是线段AB上的一点,分别以AC.BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG.BG.BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为Sn,则S2020-S2019的值为____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′,
(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为________.
(3)能使S△MBC=S△ABC的格点M共有_______个(点M异于点A)

相关试题