【题目】学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.
(1)购买一件A道具和一件B道具各需要多少元?
(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.
①请问道具A最多购买多少件?
②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?
参考答案:
【答案】(1)购买一件A道具需要15元,购买一件B道具需要5元;(2)①A道具最多购买32件.②该班级共有3种购买方案,方案1:A道具购买30件,B道具购买30件;方案2:A道具购买31件,B道具购买29件;方案3:A道具购买32件,B道具购买28件.最少购买费用为600元.
【解析】
(1)设购买一件A道具需要x元,购买一件B道具需要y元,根据“购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买A道具m件,则购买B道具(60-m)件.①根据总价=单价×数量结合购买两种道具的总费用不超过620元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论;②由A道具购买的件数不少于B道具购买件数,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论及m为整数值即可得出各购买方案,再求出各购买方案所需费用,比较后即可得出最少费用.
(1)设购买一件A道具需要x元,购买一件B道具需要y元,
依题意,得:
,
解得:
.
答:购买一件A道具需要15元,购买一件B道具需要5元.
(2)设购买A道具m件,则购买B道具(60﹣m)件.
①依题意,得:15m+5(60﹣m)≤620,
解得:m≤32.
答:A道具最多购买32件.
②依题意,得:m≥60﹣m,
解得:m≥30,
又∵m≤32,且m为整数,
∴m=30,31,32.
∴该班级共有3种购买方案,方案1:A道具购买30件,B道具购买30件;方案2:A道具购买31件,B道具购买29件;方案3:A道具购买32件,B道具购买28件.
方案1所需费用15×30+5×30=600(元),
方案2所需费用15×31+5×29=610(元),
方案3所需费用15×32=5×28=620(元).
∵600<610<620,
∴最少购买费用为600元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,添加以下条件,不能判定
的是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,高铁列车座位后面的小桌板收起时可以近似地看作与地面垂直,展开小桌板后,桌面会保持水平,其中图1、图2分别是小桌板收起时和展开时的实物,图3中的实线是小桌板展开后的示意图,其中OB表示小桌板桌面的宽度,BC表示小桌板的支架,连接OA,此时OA=75厘米,∠AOB=∠ACB=37°,且支架长BC与桌面宽OB的长度之和等于OA的长度,求点B到AC的距离.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

-
科目: 来源: 题型:
查看答案和解析>>【题目】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1-1=a2+6a+9-1
=(a+3)2-12=

②M=a2-2a-1,利用配方法求M的最小值.
解:

∵(a-b)2≥0,∴当a=1时,M有最小值-2.
请根据上述材料解决下列问题:
(1)用配方法因式分解:
.(2)若
,求M的最小值.(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将直角三角形 ABC 沿 AB 方向平移 AD 的长度得到三角形DEF,已知BE=5, EF=8, CG=2,则图中阴影部分的面积为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:
A型销售数量(台)
B型销售数量(台)
总利润(元)
5
10
2000
10
5
2500
(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?
(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;
(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2 , 室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台?
相关试题