【题目】如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1).
(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;
(2)写出点A1,B1,C1的坐标(直接写答案).
(3)连接OB1,OC1,求△OB1C1的面积.
![]()
参考答案:
【答案】(1)见解析;(2)A1(-3,4)B1(-1,2)C1(-5,1);(3)4.5
【解析】
(1)首先确定A、B、C三点关于y轴的对称点,再连接即可;
(2)根据平面直角坐标系写出各点坐标即可;
(3)利用矩形的面积减去周围多余三角形的面积即可.
解:(1)如图所示:△A1B1C1,即为所求;
![]()
(2)A1(-3,4),B1(-1,2),C1(-5,1);
故答案为:(-3,4);(-1,2);(-5,1);
(3)OB1,OC1,如图
![]()
△OB1C1的面积为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程
,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程
的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程
的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当
,
,
,
与a,b,c之间满足怎样的关系时,点P(
,
),Q(
,
)就是符合要求的一对固定点? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1= A1A2=1.以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4……依次规律得到等腰直角三角形OA2015A2016,则点A2015的坐标为 __.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】=如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,使得弦AC=2
,则∠BOC=°. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数的图象l经过点A(2,5),B(-4,-1)两点.
(1)求一次函数表达式.
(2)若点E在x轴上,且E(2,O),点C为直线l与x轴的交点,求△CDE的面积.
(3)你能求出点E到直线l的距离吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读:已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,ab=3,
∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.
请你根据上述解题思路解答下面问题:
(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.
(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.
相关试题