【题目】如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为( )
![]()
A. 4 B. 8 C. 10 D. 12
参考答案:
【答案】B
【解析】由四边形ABCD为矩形,得到OD=OC,再利用平行四边形的判定得到四边形DECO为平行四边形,利用菱形的判定定理得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.
解:∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,
∴OA=OB=OC=OD=2,
∵CE∥BD,DE∥AC,
∴四边形DECO为平行四边形,
∵OD=OC,
∴四边形DECO为菱形,
∴OD=DE=EC=OC=2,
则四边形OCED的周长为2+2+2+2=8,
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=--
x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.
(1)求证:△AEG是等腰直角三角形;
(2)求证:AG+CG=
DG.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,平面直角坐标系中,A(0,4),B(0,2),点C是x轴上一点,点D为OC的中点.
(1)求证:BD∥AC;
(2)若点C在x轴正半轴上,且BD与AC的距离等于1,求点C的坐标;
(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算2a﹣a,正确的结果是( )
A.﹣2a3
B.1
C.2
D.a -
科目: 来源: 题型:
查看答案和解析>>【题目】若a和b都是有理数,则下列①若a≠b,则a2≠b2;②若a>b,则a2>b2;③若a>b,则|a|>|b|;④若a2>b2 , 则a>b说法中,正确的个数是( )
A.0个
B.1个
C.2个
D.3个 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:
①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是( )

A. ①② B. ①③ C. ②③ D. ②④
相关试题