【题目】为了应对人口老龄化问题,国家大力发展养老事业.某养老机构定制轮椅供行动不便的老人使用.图①是一种型号的手动轮椅实物图,图②为其侧面示意图,该轮椅前后长度为120cm,后轮半径为24cm,CB=CD=24cm,踏板CB与CD垂直,横档AD、踏板CB与地面所成的角分别为15°、30°.求:
(1)求横档AD的长;
(2)点C离地面的高度.(sin15°=0.26,cos15°=0.97,精确到1cm)
![]()
参考答案:
【答案】(1)65cm(2)20cm
【解析】试题分析:(1)根据题意结合锐角三角函数关系得出FC,DF的长,进而得出AE的长,再求AD的长;
(2)首先结合锐角三角函数关系得出DE的长,进而表示出点C离地面的高度为:DE+24-DF,即可得出答案.
试题解析:(1)如图所示:
在Rt△DFC中,FC=DCsin30°=24×
=12,
DF=DCcos30°=24×
=
,
所以CG=DF=
,
所以AE=120﹣12﹣24﹣
≈63.2(cm),
在Rt△ADE中,AD=
=
≈65(cm),
因此,横档AD的长为65cm;
(2)在Rt△ADE中,DE=ADsin15°=65×0.26=16.9,
所以点C离地面的高度为DE+24﹣DF=16.9+24﹣
≈20(cm),
因此,点C离地面的高度为20cm.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于 6,△BEF的面积等于4,则四边形CDFE的面积等于___________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,有若干边长为1的正方形卡片,第1次并排摆2张黑色卡片,铺成一个长方形;第2次在黑色卡片上方和右侧摆白色卡片,所有卡片铺成了一个较大的长方形;第3次继续在白色卡片上方和右侧摆黑色卡片,所有卡片铺成了一个更大的长方形;以此类推,请解决以下问题:

(1)仅第10次要用去______张卡片,摆完第10次后,总共用去_______张卡片.
(2)你知道 2+4+6+8+……+2n的结果是多少吗?写出结果,结合图形规律说明你的理由.
(3)求出从第51次至第100次所摆卡片的数量之和.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的一个条是:_____.(只填一个你认为正确的条件即可,不添加任何线段与字母)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD.

(1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为 .
(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.
(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC
180°),试求出∠MON的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.
(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;
(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;
(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.

-
科目: 来源: 题型:
查看答案和解析>>【题目】当你把纸对折一次时,可以得到2层,对折2次时可以得到4层,对折3次时可以得到8层,照这样折下去:
(1)你能发现层数与折纸次数的关系吗?
(2)计算对折5次时的层数;
(3)如果每层纸的厚度是0.05毫米,求对折10次之后纸的总厚度.
相关试题