【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
![]()
参考答案:
【答案】(1)证明见解析;(2)75.
【解析】
(1)根据等边对等角可得∠B=∠ACF,然后利用SAS证明△ABE≌△ACF即可;
(2)根据△ABE≌△ACF,可得∠CAF=∠BAE=30°,再根据AD=AC,利用等腰三角形的性质即可求得∠ADC的度数.
(1)∵AB=AC,
∴∠B=∠ACF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(SAS);
(2)∵△ABE≌△ACF,∠BAE=30°,
∴∠CAF=∠BAE=30°,
∵AD=AC,
∴∠ADC=∠ACD,
∴∠ADC=
=75°,
故答案为:75.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.

(1)探求AO到OD的数量关系,并说明理由;
(2)如图②,若P,N分别为BE,BC上的动点.
(Ⅰ)当PN+PD的长度取得最小值时,求BP的长度;
(Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线l:y=(x﹣h)2﹣4(h为常数)
(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,l与x轴从左到右的交点为A、B,与y轴交于点C.

①求l的解析式,并写出l的对称轴及顶点坐标.
②在l上是否存在点D,使S△ABD=S△ABC , 若存在,请求出D点坐标,若不存在,请说明理由.
③点M是l上任意一点,过点M做ME垂直y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.
(2)设l与双曲线y=
有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是等边三角形,
是等腰直角三角形,∠BAD=90°,AE⊥BD于点E.连CD分别交AE,AB于点F,G,过点A做AH⊥CD交BD于点H,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为( )
A. 5B. 4C. 3D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校以“我最想去的社会实践地”为课题,开展了一次调查,从全校同学中随机抽取了部分同学进行调查,每位同学从“荪湖花海”、“保国寺”、“慈城古镇”、“绿色学校”中选取一项最想去的社会实践地,并将调查结果绘制成如下的统计图(部分信息未给出).

请根据统计图中信息,解答下列问题:
(1)该调查的样本容量为________,a=________%,b=________%,“荪湖花海”所对应扇形的圆心角度数为________度.
(2)补全条形统计图;
(3)若该校共有1600名学生,请估计全校最想去“绿色学校”的学生共有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是等边
内一点,
,
,点D是等边△ABC外一点,∠OCD=60°,OC=OD,连接OD、AD.
(1)求
的度数(用含α的式子表示)(2)求证:
;(3)探究:当α为多少度时,
是等腰三角形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边
中,
分别是边
上的点,且
,
,点
与点
关于
对称,连接
,
交
于
.(1)连接
,则
之间的数量关系是 ;(2)若
,求
的大小(用
的式子表示)(2)用等式表示线段
和
之间的数量关系,并证明.
相关试题