【题目】如图,
是等边三角形,
是等腰直角三角形,∠BAD=90°,AE⊥BD于点E.连CD分别交AE,AB于点F,G,过点A做AH⊥CD交BD于点H,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为( )
![]()
A. 5B. 4C. 3D. 2
参考答案:
【答案】B
【解析】
①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证
,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知
,即可作出判断.
①正确:∵
是等边三角形,
∴
,∴
.
∵
是等腰直角三角形,∴
.
又∵
,∴
,
∴
,∴
;
②错误:∵∠EDF=∠ADB-∠ADC=30°
∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG
∵∠AGD=90°-∠ADG=90°-15°=75°
∠AFG≠∠AGD
∴AF≠AG
③,④正确,由题意可得
,
,
∵
,
.∴
.
又∵
,∴
,
在
和
中
![]()
∴
≌
.∴
.
⑤正确:∵
,
,
∴
,又∵
,∴![]()
又∵
,∴
,又∵
,∴![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】点 O 是直线 AB上一点,∠COD 是直角,OE平分∠BOC.
(1)①如图1,若∠DOE=25°,求∠AOC 的度数;
②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);
(2)将图 1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.

(1)探求AO到OD的数量关系,并说明理由;
(2)如图②,若P,N分别为BE,BC上的动点.
(Ⅰ)当PN+PD的长度取得最小值时,求BP的长度;
(Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线l:y=(x﹣h)2﹣4(h为常数)
(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,l与x轴从左到右的交点为A、B,与y轴交于点C.

①求l的解析式,并写出l的对称轴及顶点坐标.
②在l上是否存在点D,使S△ABD=S△ABC , 若存在,请求出D点坐标,若不存在,请说明理由.
③点M是l上任意一点,过点M做ME垂直y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.
(2)设l与双曲线y=
有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校以“我最想去的社会实践地”为课题,开展了一次调查,从全校同学中随机抽取了部分同学进行调查,每位同学从“荪湖花海”、“保国寺”、“慈城古镇”、“绿色学校”中选取一项最想去的社会实践地,并将调查结果绘制成如下的统计图(部分信息未给出).

请根据统计图中信息,解答下列问题:
(1)该调查的样本容量为________,a=________%,b=________%,“荪湖花海”所对应扇形的圆心角度数为________度.
(2)补全条形统计图;
(3)若该校共有1600名学生,请估计全校最想去“绿色学校”的学生共有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是等边
内一点,
,
,点D是等边△ABC外一点,∠OCD=60°,OC=OD,连接OD、AD.
(1)求
的度数(用含α的式子表示)(2)求证:
;(3)探究:当α为多少度时,
是等腰三角形.
相关试题