【题目】如图,菱形ABCD中,∠D=135°,AD=6,CE=
,点P是线段AC上一点,点F是线段AB上一动点,则PE+PF的最小值是( )
![]()
A. 3 B. 6 C. 2
D. ![]()
参考答案:
【答案】D
【解析】分析:先作点E关于AC的对称点点G,再连接BG,过点B作BH⊥CD于H,运用勾股定理求得BH和GH的长,最后在Rt△BHG中,运用勾股定理求得BG的长,即为PE+PF的最小值.
详解:作点E关于AC的对称点点G,连接PG、PE,则PE=PG,CE=CG=2
,
连接BG,过点B作BH⊥CD于H,则∠BCH=∠CBH=45°,
![]()
∴Rt△BHC中,BH=CH=
,
∴HG=3
-
=2
,
∴Rt△BHG中,BG=
,
∵当点F与点B重合时,PE+PF=PG+PB=BG(最短),
∴PE+PF的最小值是
.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数
(k>0)在第一象限内过点A,且与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若F为BC的中点,且S△AOF=24
,求OA长及点C坐标;(3)在(2)的条件下,过点F作EF∥OB交OA于点E(如图2),若点P是直线EF上一个动点,连结,PA,PO,问是否存在点P,使得以P,A,O三点构成的三角形是直角三角形?若存在,请指出这样的P点有几个,并直接写出其中二个P点坐标;若不存在,请说明了理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角
中,∠C=90°,DC = 2,∠CAB的平分线AD交BC于点D,DE垂直平分AB.求∠B的度数和DB的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB交y轴于点D.

(1)
的值是 .
(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.
(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.
求证:∠C=∠D.

证明:因为∠1=∠2(已知),∠1=∠3( )
得∠2=∠3( )
所以AE//_______( )
得∠4=∠F( )
因为__________(已知)
得∠4=∠A
所以______//_______( )
所以∠C=∠D( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图
示,AB∥CD,且点E在射线AB与CD之间,请说明∠AEC=∠A+∠C的理由.
(2)现在如图b示,仍有AB∥CD,但点E在AB与CD的上方,①请尝试探索∠1,∠2,∠E三者的数量关系. ②请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是70cm和48cm,则△ABC的腰和底边长分别为( )
A.24cm和22cm B.26cm和18cm
C.22cm和26cm D.23cm和24cm
相关试题