【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△CDB≌△BAG.
(2)如果四边形BFDE是菱形,那么四边形AGBD是什么特殊四边形?并证明你的结论.
![]()
参考答案:
【答案】(1)证明见解析(2)四边形AGBD是矩形
【解析】
根据全等的条件证明即可.
因为四边形ABCD是平行四边形,所以AD=BC,CD=BA,∠ C=∠ABG,又因为 AG∥BD,所以四边形ADBG是平行四边形,所以AD=BG,所以BG=CB,所以△ CDB≌ △ BAG.
(2)结论:四边形AGBD是矩形.
理由:因为四边形BEDF是菱形,所以BE=DE=AE,所以∠ADB=90°,又因为四边形ADBG是平行四边形,
所以四边形ADBG是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校有1500名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被墨水盖住):
某校100名学生上学方式频数分布表
方式
划记
频数
步行
正正正
15
骑车
正正正正正

29
乘公共交通工具
正正正正正正
30
乘私家车
其它
合计
100
(1)本次调查的个体是 .
(2)求频数分布表中,“乘私家车”部分对应的频数.
(3)请估计该校1500名学生中,选择骑车、乘公交和步行上学的一共有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)在图中的点上标出相应字母A、B、C,并求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:数和形是数学的两个主要研究对象,我们经常运用数形结合,树形转化的方法解决一些数学问题,小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=
,他还利用图2证明了线段P1P2的中点P(x,y),P的坐标公式:x=
,y=
.启发应用:
如图3:在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A,B,
(1)求⊙M的半径及圆心M的坐标;
(2)判断点C与⊙M的位置关系,并说明理由;
(3)若∠BOA的平分线交AB于点N,交⊙M于点E,分别求出OE的表达式y1,过点M的反比例函数的表达式y2,并根据图象,当y2>y1>0时,请直接写出x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理
、
两种型号的净水器,每台
型净水器比每台
型净水器进价多200元,用5万元购进
型净水器与用4.5万元购进
型净水器的数量相等.(1)求每台
型、
型净水器的进价各是多少元;(2)槐荫公司计划购进
、
两种型号的净水器共50台进行试销,其中
型净水器为
台,购买资金不超过9.8万元.试销时
型净水器每台售价2500元,
型净水器每台售价2180元.槐荫公司决定从销售
型净水器的利润中按每台捐献
元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为
,求
的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
经过点A(
,0),B(
,0),且与y轴相交于点C.(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

相关试题