【题目】如图,在△ABC中,BC=8cm,∠BPC=118°,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是_____cm,∠DPE=_____°.
![]()
参考答案:
【答案】8 56.
【解析】
(1)分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.
(2)根据三角形内角和定理即可求得.
(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.
(2)∵∠PBD=∠BPD,∠PCE=∠CPE,∠BPC=118°,
∴∠DPC=118°﹣∠PBC﹣∠PCB
∵∠BPC+∠PBC+∠PCB=180°,
∴∠PBC+∠PCB=180°﹣118°,
∴∠DPC=118°﹣(∠PBC+∠PCB)=118°﹣180°+118°=56°.
故答案是:8,56.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是( )

A. 8 B. 10 C.
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=AC, D为直线BC上一动点(不与B,C重合),在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)当D在线段BC上时,求证:△BAD ≌△CAE;
(2)当点D运动到何处时,AC⊥DE,并说明理由;
(3)当CE∥AB时,若△ABD中最小角为20°,直接写出∠ADB的度数.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,(1)∵∠A=_____(已知),
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,在BC边上取一点E,使得CD=CE,连接AE并延长交BD于点F.
(1)依题意补全图形;
(2)求证:AF⊥BD;
(3)连接CF,点C 关于BD的对称点是Q,连接FQ,用等式表示线段CF,CQ之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.建立如图所示的直角坐标系,

(1)请在图中标出△ABC的外接圆的圆心P的位置,并填写: 圆心P的坐标:P( , )
(2)将△ABC绕点A逆时针旋转90°得到△ADE,画出图形,并求△ABC扫过的图形的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.

相关试题