【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E. ![]()
(1)求证:DC=DE;
(2)若tan∠CAB=
,AB=3,求BD的长.
参考答案:
【答案】
(1)证明:连接OC,
![]()
∵CD是⊙O的切线,
∴∠OCD=90°,
∴∠ACO+∠DCE=90°,
又∵ED⊥AD,∴∠EDA=90°,
∴∠EAD+∠E=90°,
∵OC=OA,∴∠ACO=∠EAD,
故∠DCE=∠E,
∴DC=DE
(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,
在Rt△EAD中,
∵tan∠CAB=
,∴ED=
AD=
(3+x),
由(1)知,DC=
(3+x),在Rt△OCD中,
OC2+CD2=DO2,
则1.52+[
(3+x)]2=(1.5+x)2,
解得:x1=﹣3(舍去),x2=1,
故BD=1
【解析】(1)利用切线的性质结合等腰三角形的性质得出∠DCE=∠E,进而得出答案;(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,利用勾股定理得出BD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列两材料,并解决相关的问题.
(材料一)按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为
,依此类推,排在第
位的数称为第
项,记为
.一般地,若果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母
表示
,如数列
为等比数列,其中
,公比
.(材料二)为了求
的值.可令
则
, 因此
,所以
,即

(1)等比数列
的公比
为_________,第6项是________(2)如果一个数列
是等比数列,且公比为
,那么根据定义可得到
,
,
,由此可得
(用
和
的代数式表示)(3)若某等比数列的公比
,第2项
,则它的第1项
,第4项
,并求出
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上三点A,O,B表示的数分别为-3,0,1,点P为数轴上任意一点,其表示的数为x.
(1)如果点P到点A,点B的距离相等,那么x=______;
(2)若点P到点A,点B的距离之和最小,则整数x是____________ ;
(3)当点P到点A,点B的距离之和是6时,求x的值;
(4)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动多少秒时,点P到点E,点F的距离相等?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=
(m≠0)交于点A(2,﹣3)和点B(n,2). 
(1)求直线与双曲线的表达式;
(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y=
(m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读下列解题过程,然后回答问题:
解方程:

解:①当
≥0时,原方程可化为:
,解得
;②当
<0时,原方程可化为:
,解得
;所以原方程的解是
或
(1)解方程:

(2)探究:当
为何值时,方程
①无解;②只有一个解;③有两个解。 -
科目: 来源: 题型:
查看答案和解析>>【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
4台
1200元
第二周
5台
6台
1900元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是工人师傅用同一种材料制成的金属框架,已知
,
,
,其中
的周长为24cm,
,则制成整个金属框架所需这种材料的总长度为( )
A. 45cm B. 48cm C. 51cm D. 54cm
相关试题