【题目】如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1,
=1.4,
=1.7).
![]()
参考答案:
【答案】(1)证明见解析;(2)26.5.
【解析】
试题分析:(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.
(2)首先证明
,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.
试题解析:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.
(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴
,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=
AB=6,∵
,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=
BD=3,BE=BD×cos∠DBE=6×
=
,∴
的长=
=2π,∴图中阴影部分周长之和为
=
=4×3.1+9+3×1.7=26.5.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知x=1+3m,y=1-9m,用含x的式子表示y为:y= ______ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是( )
x
6.17
6.18
6.19
6.20
y
﹣0.03
﹣0.01
0.02
0.04
A.﹣0.01<x<0.02
B.6.17<x<6.18
C.6.18<x<6.19
D.6.19<x<6.20 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2﹣2x+k=0的一个根是3,则另一个根是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D,E在△ABC的边BC上,连接AD,AE.下面有三个等式:①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题Ⅰ“如果①②成立,那么③成立”; 命题Ⅱ“如果①③成立,那么②成立”;命题Ⅲ“如果②③成立,那么①成立”.

(1)以上三个命题是真命题的为(直接作答);
(2)请选择一个真命题进行证明(先写出所选命题,然后证明). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=
,BF=2,求阴影部分的面积(结果保留π).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒
cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;
(2)若△MBN与△ABC相似,求t的值;
(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

相关试题