【题目】如图,放在平面直角坐标系中的圆O的半径为3,现做如下实验:抛掷一枚均匀的正四面体骰子,它有四个顶点,各顶点数分别是1,2,3,4,每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标). ![]()
(1)若第一次骰子朝上的点数为1,第二次骰子朝上的点数为2,此时点P(填“是”或“否”)落在圆O内部;
(2)请你用树状图或列表的方法表示出P点坐标的所有可能结果;
(3)求点P落在圆O面上(含内部与边界)的概率.
参考答案:
【答案】
(1)是
(2)解:列表如下:
x y | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
(3)解:由表格可知共有16种等可能结果,其中点P落在圆O面上(含内部与边界)的有(1,1)、(1,2)、(2,1)、(2,2)这4种,
∴点P落在圆O面上(含内部与边界)的概率为
= ![]()
【解析】解:(1)若第一次骰子朝上的点数为1,第二次骰子朝上的点数为2,此时点P的坐标为(1,2), 由图可知点P落在圆O内部,
所以答案是:是;
【考点精析】利用列表法与树状图法对题目进行判断即可得到答案,需要熟知当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,
(1)如图1,
①线段CD和BE的数量关系是;
②请写出线段AD,BE,DE之间的数量关系 .
(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一个奇数是347,则m的值是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了
如图,作一个
,以O为圆心任意长为半径画弧分别交OA,OB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接
小鹏通过观察和推理,得出结论:OP平分
.你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.
已知:
中,______
______,______
______,______
______.求证:OP平分
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】边长为1的小正方形网格中,点A,B,C均落在格点上.
(1)猜想△ABC的形状 ,并证明;
(2)直接写出△ABC的面积= ;
(3)画出△ABC关于直线l的轴对称图形△A1B1C1.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两列火车分别从A,B两城同时相向匀速驶出,甲车开往终点B城,乙车开往终点A城,乙车比甲车早到达终点;如图,是两车相距的路程d(千米)与行驶时间t(小时)的函数关系图象.

(1)A,B两城相距千米,经过小时两车相遇;
(2)分别求出甲、乙两车的速度;
(3)直接写出甲车距A城的路程S1、乙车距A城的路程S2与t的函数关系式;(不必写出t的范围)
(4)当两车相距100千米时,求t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,我们规定:用符号[
]表示不大于
的最大整数,称[
]为a的根整数,例如:[
]=3,[
]=3.(1)仿照以上方法计算:[
] = ;[
] = .(2)若[
]=1,写出满足题意的x的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次 [
]=3→[
]=1,这时候结果为1.(3)对100连续求根整数, 次之后结果为1.
(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 .
相关试题