【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(
,y2)是抛物线上两点,则y1<y2 , 其中说法正确的是( ) ![]()
A.①②
B.②③
C.①②④
D.②③④
参考答案:
【答案】A
【解析】解:∵抛物线开口向上,
∴a>0,
∵抛物线对称轴为直线x=﹣
=﹣1,
∴b=2a>0,则2a﹣b=0,所以②正确;
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(﹣5,y1)离对称轴要比点(
,y2)离对称轴要远,
∴y1>y2 , 所以④错误.
故选A.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,点C为⊙O上的一点,点D是
的中点,过D作⊙O的切线交AC于E,DE=3,CE=1. 
(1)求证:DE⊥AC;
(2)求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.

(1)求证:AD=DE;
(2)求∠DCE的度数;
(3)若BD=1,求AD,CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=(x﹣1)2+n与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3),点D与点C关于抛物线的对称轴对称.

(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线对称轴上的一动点,当△PAC的周长最小时,求出点P的坐标;
(3)点Q在x轴上,且∠ADQ=∠DAC,请直接写出点Q的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=
cm,∠BAC=120°,点P在BC上从C向B运动,点Q在AB、AC上沿B→A→C运动,点P、Q分别从点C、B同时出发,速度均为1cm/s,当其中一点到达终点时两点同时停止运动,则当运动时间t=_____s时,△PAQ为直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)①若
有意义,则化简
= .②化简:a2
= .(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣
,求(n﹣m)2018.
相关试题