【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC,CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是

(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?

(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)


参考答案:

【答案】
(1)OM=ON
(2)解:仍成立.

证明:如图2,连接AC,BD,

则由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°

∵∠MON=90°

∴∠BOM=∠CON

在△BOM和△CON中

∴△BOM≌△CON(ASA)

∴OM=ON


(3)解:如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,

则∠OEM=∠OFN=90°

又∵∠C=90°

∴∠EOF=90°=∠MON

∴∠MOE=∠NOF

在△MOE和△NOF中

∴△MOE≌△NOF(AAS)

OE=OF

又∵OE⊥BC,OF⊥CD

∴点O在∠C的平分线上

∴O在移动过程中可形成线段AC


(4)解:O在移动过程中可形成直线AC
【解析】解:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;

【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.

关闭