【题目】如图,连接在一起的两个等边三角形的边长都为1cm,一个微型机器人由点A开始按A→B→C→D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2019cm后,它停在了点_____上.
![]()
参考答案:
【答案】D
【解析】
根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1cm,2019=6×336+3,行走了336圈又多3cm,即落到D点.
解:∵两个全等的等边三角形的边长为1cm,
∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6cm,
∵2019=6×336+3,即行走了336圈又3cm,
∴行走2016cm后,则这个微型机器人停在A点,再走3cm,则停在D点,
故答案为:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:
(1)在刚出发时,我公安快艇距走私船多少海里?
(2)计算走私船与公安艇的速度分别是多少?
(3)求出l1,l2的解析式.
(4)问6分钟时,走私船与我公安快艇相距多少海里?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.
品名商店
笔记本(元/件)
水笔(元/件)
友谊超市
2.4
2
网店
2
1.8
(1)请求出需购买笔记本和水笔的数量;
(2)求从网店购买这些奖品可节省多少元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级全体同学参加了“爱心一日捐捐款活动,该校随杋抽査了部分同学捐款的情况统计如图所示:

(1)求出本次抽查的学生人数;
(2)求出捐款10元的学生人数,并将条形图补充完整;
(3)捐款金额的众数是 元,中位数是 .
(4)请估计全校八年级1000名学生,捐款20元的有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).

(1)求直线AB的函数表达式;
(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;
(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.
相关试题