【题目】某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包
元的价格卖出这种茶叶,卖完后,这家商店( )
A.盈利了 B.亏损了 C.不赢不亏 D.盈亏不能确定
参考答案:
【答案】A
【解析】
试题分析:根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.
解:根据题意列得:在甲批发市场茶叶的利润为40(
﹣m)=20(m+n)﹣40m=20n﹣20m;
在乙批发市场茶叶的利润为60(
﹣n)=30(m+n)﹣60n=30m﹣30n,
∴该商店的总利润为20n﹣20m+30m﹣30n=10m﹣10n=10(m﹣n),
∵m>n,∴m﹣n>0,即10(m﹣n)>0,
则这家商店盈利了.
故选A
-
科目: 来源: 题型:
查看答案和解析>>【题目】小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为( )

A. A B. B C. C D. D
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=2x+3与y轴交于A点,与反比例函数y=
(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0). 
(1)求反比例函数的解析式;
(2)点D(a,1)是反比例函数y=
(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知|a+b|+|a-b|-2b=0,在数轴上给出关于a,b的四种位置关系如图所示,则可能成立的有( )

A. 1种 B. 2种 C. 3种 D. 4种
-
科目: 来源: 题型:
查看答案和解析>>【题目】为确保信息安全,信息需要加密传输,其原理如下:

现将10个数字按图所示排成一个圈,并设置了一种数字信息的加密规则:加密钥匙为“n&3”,“n&3”代表“把明文n换成图中从它开始顺时针跳过3个数字的那个数字”,例如明文是5时,对应的密文为9.若收到的密文是6452,那么通过解密,它对应的明文是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图②中阴影部分的面积.
(3)观察图②你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:
已知a+b=7,ab=5,求(a-b)2的值.(写出过程)

相关试题