【题目】如图,直线y=2x+3与y轴交于A点,与反比例函数y=
(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0). ![]()
(1)求反比例函数的解析式;
(2)点D(a,1)是反比例函数y=
(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:∵BC⊥x轴于点C,且C点的坐标为(1,0),
∴在直线y=2x+3中,当x=1时,y=2+3=5,
∴点B的坐标为(1,5),
又∵点B(1,5)在反比例函数y=
上,
∴k=1×5=5,
∴反比例函数的解析式为:y= ![]()
(2)
解:将点D(a,1)代入y=
,得:a=5,
∴点D坐标为(5,1)
设点D(5,1)关于x轴的对称点为D′(5,﹣1),
过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,
可得:
,
解得:
,
∴直线BD′的解析式为:y=﹣
x+
,
根据题意知,直线BD′与x轴的交点即为所求点P,
当y=0时,得:﹣
x+
=0,解得:x=
,
故点P的坐标为(
,0)
【解析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;
(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.本题主要考查一次函数与反比例函数的交点问题及依据轴对称性质求最短路线问题,待定系数法求一次函数、反比例函数的解析式是解题关键.
【考点精析】关于本题考查的轴对称-最短路线问题,需要了解已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.
(1)如果CD=5cm,MN=8cm,求AB的长;
(2)如果AB=a,MN=b,求CD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=2
,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为( )

A. A B. B C. C D. D
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包茶叶,如果商家以每包
元的价格卖出这种茶叶,卖完后,这家商店( )A.盈利了 B.亏损了 C.不赢不亏 D.盈亏不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知|a+b|+|a-b|-2b=0,在数轴上给出关于a,b的四种位置关系如图所示,则可能成立的有( )

A. 1种 B. 2种 C. 3种 D. 4种
相关试题