【题目】(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a、b的式子表示);
(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2,分别以AB、AC为边,作等边三角形ABD和等边△ACE,连接CD、BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值;
③直接写出△DBC面积的最大值.
![]()
参考答案:
【答案】(1)CB的延长线上,a+b;(2)①CD=BE,理由见解析;②6;③4.
【解析】
(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;
②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;
③作DP⊥CB,交CB延长线于点P,当DB⊥BC时,DP取得最大值,最大值为2,再根据三角形的面积公式求解可得.
(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为:CB的延长线上,a+b;
(2)①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,
∵
∴△CAD≌△EAB(SAS),
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=6;
③如图,过点D作DP⊥CB,交CB延长线于点P,
![]()
在Rt△BDP中,DP<DB,
当DB⊥BC时,DP取得最大值,最大值为2,
∴△DBC面积的最大值为![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)(观察猜想)当点E在AB的中点时,如图1,过点E作EF∥BC,交AC于点F,观察猜想得到线段AE与DB的大小关系是 ;
(2)(探究证明)当点E不是AB的中点时,如图2,上述结论是否成立,如果成立,请写出解答过程,如果不成立,请说明理由;
(3)(拓展延伸)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为2,AE=1,求CD的长(请直接写出结果).

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:
①abc>0;
②a+b>0;
③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;
④a(m﹣1)+b=0;
⑤若c≤﹣1,则b2﹣4ac≤4a.
其中结论错误的是 . (只填写序号) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程总有两个不相等的实数根 -
科目: 来源: 题型:
查看答案和解析>>【题目】
中,三个内角的平分线交于点
,过点
作
,交边
于点
.(1)如图,若∠ABC=40°,则∠AOC= ,∠ADO= ;
(2)猜想
与
的关系,并说明你的理由;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4
,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ABC的顶点A在△ECD的斜边DE上.
(1)求证AE2+AD2=2AC2 ;
(2)如图2,过点C作CO垂直AB于0点并延长交DE于点F,请确定线段AE、AF、DF间的数量关系,并证明你的结论.

相关试题