【题目】x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)= x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如下图.这样,我们可以得到:x2+3x+2= (x+1)(x+2),利用这种方法,将下列多项式分解因式:
(1)x2+7x+10
(2)-2x2-6x+36
![]()
参考答案:
【答案】(1)
;(2)![]()
【解析】
(1)先把二次项系数分解1和1,把常数项也分成2和5,把对角线上的两个数交叉相乘,再将所得的积相加,恰好等于一次项系数7;
(2)先把二次项系数分解1和-2,把常数项也分成6和6,把对角线上的两个数交叉相乘,再将所得的积相加,恰好等于一次项系数-6.
(1)![]()
∴![]()
(1)![]()
∴![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与
轴交于
,
两点(点
在
轴的正半轴上),与
轴交于点
,矩形
的一条边
在线段
上,顶点
,
分别在线段
,
上.
求点
,
,
的坐标;
若点
的坐标为
,矩形
的面积为
,求
关于
的函数表达式,并指出
的取值范围;
当矩形
的面积
取最大值时,①求直线
的解析式;②在射线
上取一点
,使
,若点
恰好落在该抛物线上,则
________. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司购进某种水果的成本为
元/千克,经过市场调研发现,这种水果在未来
天的销售价格
(元/千克)与时间
(天)之间的函数关系式为
,且其日销售量
(千克)与时间
(天)的关系如下表:时间
天





…
日销售量
千克





…
已知
与
之间的变化规律符合一次函数关系,试求在第
天的日销售量是多少?
问哪一天的销售利润最大?最大日销售利润为多少?
在实际销售的前
天中,公司决定每销售
千克水果就捐赠
元利润
给“精准扶贫”对象.现发现:在前
天中,每天扣除捐赠后的日销售利润随时间
的增大而增大,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△BEC≌△CDA;
(模型应用)
(2)① 已知直线l1:y=
x+8与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45
至直线l2,如图2,求直线l2的函数表达式;② 如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,-6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=-3x+6上的动点且在y轴的右侧.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在日历上我们可以发现其中某些数满足一定的规律.如图是2018年8月份的日历,我们任意选择其中所示的方框部分,将方框部分中的4个位置的数交叉相乘,再相减,如8×16-9×15=-7,19×27-20×26=-7,不难发现结果都是-7.
(1)请你再选择一组数按上面的方式计算,看看是否符合这个规律.并用你擅长的表达方式描述这个规律.
(2)请你利用整式的运算对以上的规律加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,AE是∠MAD的平分线,点C是AE上一点,点B是AM上一点,在AD上求作一点P,使得△ABC≌△APC,请保留清晰的作图痕迹.

(2)如图a,在△ABC中, ∠ACB=
,∠A=
,BE、CF分别是∠ABC和∠ACB的角平分线,CF与BE相交于点O.请探究线段BC、BF、CE之间的关系,直接写出结论,不要求证明.

(3)如图b,若(2)中∠ACB为任意角,其它条件不变,请探究BC、BF、CE之间又有怎样的关系,请证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.
对于两人的观点,下列说法正确的是( )

A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
相关试题