【题目】如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.
(1)求△ACD的周长;
(2)若∠C=25°,求∠CAD的度数.
![]()
参考答案:
【答案】(1)16;(2)∠CAD=105°.
【解析】
试题(1)根据线段垂直平分线的性质可得AD=BD,所以△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=16;(2)由AB=AC,∠C=25°,可得∠B=∠C=25°,∠BAC=130°,再由AD=BD,可得∠BAD=∠B=25°,所以∠CAD=130°-25°=105°.
试题解析:(1)
DE是AB的垂直平分线
AD=BD
△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=16;
(2)
AB=AC
∠B=∠C=25°,
∠BAC=130°
AD=BD
∠BAD=∠B=25°
∠CAD=130°-25°=105°
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究题
(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;
①CDB的度数为;
②线段AE,CD之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.
①求∠CDB的大小;
②请判断线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,AC=2
,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,试说明:∠GDC=∠B.请补充说明过程,并在括号内填上相应的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).

-
科目: 来源: 题型:
查看答案和解析>>【题目】三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点
按如图方式叠放在一起,当
且点
在直线
的上方时,解决下列问题:(友情提示:
,
,
.
(1)①若
,则
的度数为 ;②若
,则
的度数为 ;(2)由(1)猜想
与
的数量关系,并说明理由.(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出
的角度所有可能的值(不必说明理由);若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,二次函数y=
x2+bx+c与一次函数y=
x﹣3的图象都经过x轴上点A(4,0)和y轴上点B(0,﹣3),过动点M(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点P.
(1)求b,c的值;
(2)点M在运动的过程中,能否使△PBC为直角三角形?如果能,求出点P的坐标;如果不能,请说明理由;
(3)如图2,过点P作PD⊥AB于点,设△PCD的面积为S1 , △ACM的面积为2 , 若
=
,
①求m的值;
②如图3,将线段OM绕点O顺时针旋转得到OM′,旋转角为α(0°<α<90°),连接M'A、M'B,求M'A+
M'B的最小值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.

相关试题