【题目】如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.
(1)求证:四边形ACED是平行四边形;
(2)若AC=2,CE=4,求四边形ACEB的周长.
![]()
参考答案:
【答案】(1)详见解析;(2)10+2
.
【解析】
(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;
(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
(1)∵∠ACB=90°,DE⊥BC,
∴AC∥DE
又∵CE∥AD
∴四边形ACED是平行四边形;
(2)∵四边形ACED是平行四边形.
∴DE=AC=2.
在Rt△CDE中,由勾股定理得CD=
,
∵D是BC的中点,
∴BC=2CD=4
,
在△ABC中,∠ACB=90°,由勾股定理得AB=
,
∵D是BC的中点,DE⊥BC,
∴EB=EC=4,
∴四边形ACEB的周长=AC+CE+EB+BA=10+2
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:

(1)△AEF≌△BEC;
(2)四边形BCFD是平行四边形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.

(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】为增强学生的身体素质,教育行政部门规定每位学生每天参加户外活动的平均时间不少于1小时. 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,

请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)户外活动时间的众数和中位数分别是多少?
(4)若该市共有20000名学生,大约有多少学生户外活动的平均时间符合要求?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15° .
(1)求证:△AOB为等边三角形;
(2)求∠BOE度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:
(1)请把统计图补充完整;
(2)在这次调查的数据中,学习所用时间的众数是 ,中位数是 ,平均数是 ;
(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?

相关试题