【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=
AC,连接AE交OD于点F,连接CE、OE.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】分析:(1)由菱形ABCD中,DE∥AC且DE=
AC,易证得四边形OCED是平行四边形,继而可得OE=CD即可;
(2)由菱形的对角线互相垂直,可证得四边形OCED是矩形,根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
本题解析:
(1)证明:四边形ABCD是菱形,
∴OA=OC=
AC,AD=CD,
∵DE∥AC且DE=
AC,
∴DE=OA=OC,
∴四边形OADE、四边形OCED都是平行四边形,
(2)解:∵AC⊥BD,
∴OE=AD,
∴OE=CD;
∴四边形OCED是矩形,
∵在菱形ABCD中,∠ABC=60°,
∴AC=AB=2,
∴在矩形OCED中,CE=OD=
.
∴在Rt△ACE中,AE=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以
∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=3x+6中,y的值随x的增大而 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(0,1),M(3,2),N(4,4), 动点P从点A出发,沿y
轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(直线y = kx+b平移时k不变)
(1)当t=3时,求l 的解析式;
(2)若点M,N位于l 的异侧,确定t 的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠C=55°,∠B-∠A=10°,则∠B=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;
(2)若CD=
,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】收集数据的方法有 (至少填三种).
相关试题