【题目】在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s甲2=
,数据11,15,18,17,10,19的方差s乙2=
.
参考答案:
【答案】(1)相同点:两段台阶路每一级台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差不同.(2)甲段台阶路走起来更舒服一些;(3)每一级台阶高度均整修为15 cm(原数据的平均数),使得方差为0,此时游客行走最方便.
【解析】试题分析:(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;
(2)根据方差的性质得出即可;
(3)根据方差的稳定性得出即可.
试题解析:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,
甲的中位数、方差和极差分别为,15cm;
;16-14=2(cm),
乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),
,19-10=9(cm)
平均数:
(15+16+16+14+14+15)=15(cm);
∴
(11+15+18+17+10+19)=15(cm).
∴相同点:两段台阶路高度的平均数相同.
不同点:两段台阶路高度的中位数、方差和极差均不相同.
(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.
(3)每个台阶高度均为15cm(原平均数),使得方差为0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:
每人加工零件个数
540
450
300
240
210
120
人数
1
1
2
6
3
2
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.

(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中真命题的个数( )
(1)已知直角三角形面积为4,两直角边的比为1:2,则它的斜边为5;
(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;
(3)在直角三角形中,两条直角边长为n2﹣1和2n,则斜边长为n2+1;
(4)等腰三角形面积为12,底边上的底为4,则腰长为5.
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)P是
上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在网格中,小正方形边长为a,则图中是直角三角形的是_____.

相关试题