【题目】在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.
参考答案:
【答案】32°
【解析】
根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.
解:∵∠A=∠B+∠C,∠A+∠B+∠C=180°,
∴∠A=90°,
∴∠B+∠C=90°,
∴∠B=90°-∠C,
∵∠B=2∠C-6°,
∴90°-∠C=2∠C-6°,
∴∠C=32°.
故答案为:32°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点M,N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P

(1)求正五边形ABCDE每个内角的度数;
(2)求证:△ABM≌△BCN
(3)求∠APN的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,点P的坐标为(﹣5,3),则点P关于原点对称的点的坐标是( )
A. (5,﹣3) B. (﹣5,﹣3) C. (3,﹣5) D. (﹣3,5)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于点M

(1)若∠B=70。 , 求∠NMA.
(2)连接MB,若AB=8cm,△MBC的周长是14cm,求BC的长.
(3)在(2)的条件,直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )

A.PC=PD
B.∠CPO=∠DOP
C.∠CPO=∠DPO
D.OC=OD -
科目: 来源: 题型:
查看答案和解析>>【题目】已知AB∥x轴,A(-2,4),AB5,则B点横纵坐标之和为______.
相关试题