【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形
)靠墙摆放,高
,宽
,小强身高
,下半身
,洗漱时下半身与地面成
(
),身体前倾成
(
),脚与洗漱台距离
(点
,
,
,
在同一直线上).![]()
(1)此时小强头部
点与地面
相距多少?
(2)小强希望他的头部
恰好在洗漱盆
的中点
的正上方,他应向前或后退多少?
(
,
,
,结果精确到
)
参考答案:
【答案】
(1)
解:过点F作FN⊥DK于点N,过点E作EM⊥FN于点M,
∵EF+FG=166,FG=100,∴EF=66,
∵∠FGK=80°,∴FN=100sin80°≈98,
又∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,
∴FM=66cos45°=33
≈46.53,
∴MN=FN+FM≈144.5.
∴他头部E点与地面DK相距约144.5cm。
![]()
(2)
解:过点E作EP⊥AB于点P,延长OB交MN于点H。
∵AB=48,O为AB的中点,
∴AO=BO=24,
∵EM=66sin45°≈46.53,即PH≈46.53
GN=100cos80°≈1,8,CG=15,
∴OH=24+15+18==57
OP=OH-PH=57-46.53=10.47≈10.5,
∴他应向前10.5cm。
![]()
【解析】(1)过点F作FN⊥DK于点N,过点E作EM⊥FN于点M,他头部E点与地面DK的距离即为MN,由EF+FG=166,FG=100,则EF=66,由角的正弦值和余弦值即可解答;
(2)过点E作EP⊥AB于点P,延长OB交MN于点H,即求OP=OH-PH,而PH=EM,OH=OB+BH=OB+CG+GN,在Rt△EMF求出EM,在Rt△FGN求出GN即可.
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
(
)与反比例函数
(
)的图象交于点
,
.
(1)求这两个函数的表达式;
(2)在
轴上是否存在点
,使
为等腰三角形?若存在,求
的值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与函数y=
(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=
OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.
根据统计表,回答问题:
(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?
(2)请简单描述月用电量与气温之间的关系;
(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数
的图像与一次函数
的图像交于点
,点
的横坐标是4,点
在反比例函数
的图像上.(1)求反比例函数的表达式;
(2)观察图像回答:当
为何值时,
;(3)求
的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是
的中线,
是线段
上一点(不与点
重合).
交
于点
,
,连结
.
(1)如图1,当点
与
重合时,求证:四边形
是平行四边形;
(2)如图2,当点
不与
重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长
交
于点
,若
,且
.
①求
的度数;
②当
,
时,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某日的钱塘江观潮信息如表:


按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离
(千米)与时间
(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点
,点
坐标为
,曲线
可用二次函数
(
,
是常数)刻画.
(1)求
的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以
千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为
千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度
,
是加速前的速度).
相关试题