【题目】请把下面证明过程补充完整:
已知:如图,∠ADC=∠ABC,BE、DF分别平行∠ABC、∠ADC,且∠1=∠2.
求证:∠A=∠C.
证明:因为BE、DF分别平分∠ABC、∠ADC,( ).
所以∠1=
∠ABC,∠3=
∠ADC( ).
因为∠ABC=∠ADC(已知),
所以∠1=∠3( ),
因为∠1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
![]()
参考答案:
【答案】已知,角平分线的定义,等式的性质,等量代换,等量代换,AB∥CD,内错角相等,两直线平行,ADC,ABC,两直线平行,同旁内角互补,等式的性质.
【解析】试题分析: 根据角平分线的定义以及平行线的性质,即可得到∠ABC=∠ADC,根据平行线的判定与性质,依据等角的补角相等即可证得.
试题解析: ∵BE,DF分别平分∠ABC,∠ADC(已知),
∴∠1=
∠ABC,∠3=
∠ADC(角平分线的定义),
∵∠ABC=∠ADC(已知),
∴
∠ABC=
∠ADC(等式的性质),
∴∠1=∠3(等量代换),
∵∠1=∠2(已知),
∴∠2=∠3(等量代换),
∴AB∥CD(内错角相等,两直线平行),
∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补),
∴∠A=∠C(等量代换).
-
科目: 来源: 题型:
查看答案和解析>>【题目】线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.
(1)找出图中的所有全等三角形.
(2)找出一组相等的线段,并说明理由.
(3)取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.


-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知实数a、b在数轴上的位置如图所示,化简
=_____________;
(2)已知正整数
,
满足
,则整数对
的个数是_______________;(3)△ABC中,∠A=50°,高BE、CF所在的直线交于点O,∠BOC的度数__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,D是边BC上的一点,DE⊥AB,DF⊥AC,垂足分别是E、F,EF∥BC.
(1)求证:△BDE≌△CDF;
(2)若BC=2AD,求证:四边形AEDF是正方形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
租金(单位:元/台时)
挖掘土石方量(单位:m3/台时)
甲型挖掘机
100
60
乙型挖掘机
120
80
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=
;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.

相关试题