【题目】如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).
(1)求抛物线l2的函数表达式;
(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;
(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.
![]()
参考答案:
【答案】(1)抛物线l2的函数表达式;y=x2﹣4x﹣5;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.5.
【解析】
(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤5时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.
(1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,
∴x=﹣
=1,b=2,
∴抛物线l1的函数表达式为:y=﹣x2+2x+3,
当y=0时,﹣x2+2x+3=0,
解得:x1=3,x2=﹣1,
∴A(﹣1,0),B(3,0),
设抛物线l2的函数表达式;y=a(x﹣5)(x+1),
把D(0,﹣5)代入得:﹣5a=﹣5,a=1,
∴抛物线l2的函数表达式;y=x2﹣4x﹣5;
(2)作CH⊥PG交直线PG于点H,
设P点坐标为(1,y),由(1)可得C点坐标为(0,3),
∴CH=1,PH=|3﹣y |,PG=|y |,AG=2,
∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2= =y2+4,
∵PC=PA,
∴PA2=PC2,
∴y2﹣6y+10=y2+4,解得y=1,
∴P点坐标为(1,1);
![]()
(3)由题意可设M(x,x2﹣4x﹣5),
∵MN∥y轴,
∴N(x,﹣x2+2x+3),
令﹣x2+2x+3=x2﹣4x﹣5,可解得x=﹣1或x=4,
①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣5)=﹣2x2+6x+8=﹣2(x﹣
)2+
,
显然﹣1<
≤4,
∴当x=
时,MN有最大值12.5;
②当4<x≤5时,MN=(x2﹣4x﹣5)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣
)2﹣
,
显然当x>
时,MN随x的增大而增大,
∴当x=5时,MN有最大值,MN=2(5﹣
)2﹣
=12.
综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.5.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=
,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DFGF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“
”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如将多项式
因式分解的结果为
,当
时,
,
,
,此时可以得到数字密码
或
等.(1)根据上述方法,当
,
时,对于多项式
分解因式后可以形成哪些数字密码(写出四个即可)?(2)将多项式
因式分解成三个一次式的乘积后,利用题目中所示的方法,当
时可以得到密码
,求
,
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,若∠ABC=30°,∠C=45°,ED=
,点H是BD上的一个动点,则HG+HC的最小值为______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰
中,
是BC边上的高,且
,则等腰
底角的度数为__________.
相关试题