【题目】已知关于x的方程x2﹣(2m+1)x+m(m+1)=0
(1)求证:方程总有两个不相等的实数根;
(2)设方程的两根分别为x1、x2 , 求x
+x
的最小值.
参考答案:
【答案】
(1)证明:∵△=[﹣(2m+1)]2﹣4m(m+1)=1>0,
∴方程总有两个不相等的实数根
(2)解:∵方程的两根分别为x1、x2,
∴x1+x2=2m+1,x1x2=m(m+1),
∴
+
=
﹣2x1x2=(2m+1)2﹣2m(m+1)=2m2+2m+1=2
+
,
∴
+
的最小值为 ![]()
【解析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)根据根与系数的关系可得x1+x2=2m+1、x1x2=m(m+1),利用配方法可将
+
变形为
﹣2x1x2 , 代入数据即可得出
+
=2
+
,进而即可得出
+
的最小值.
【考点精析】本题主要考查了求根公式和根与系数的关系的相关知识点,需要掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】以直线AB上一点O为端点作射线 OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE= °;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=
∠AOE,求∠BOD的度数?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校甲、乙两班分别有一男生和一女生共4名学生报名竞选校园广播播音员.
(1)若从甲、乙两班报名的学生中分别随机选1名学生,则所选的2名学生性别相同的概率是多少?
(2)若从报名的4名学生中随机选2名,求这2名学生来自同一班级的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天
(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时 天
(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校准备购进一批排球和篮球,已知1个排球和2个篮球共需320元,3个排球和1个篮球共需360元.
(1)求一个排球和一个篮球的售价各是多少元?
(2)学校准备购进这种排球和篮球共40个,且篮球的数量不少于排球数量的3倍,求最省钱的购买方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求证:△ABE≌△CDF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C为AB上面半圆上一点,点D为AB的下面半圆的中点,连接CD与AB交于点E,延长BA至F,使EF=CF.

(1)求证:CF与⊙O相切;
(2)若DEDC=13,求⊙O的半径.
相关试题