【题目】已知数列{an}满足
,(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设
,数列{bn}的前n项和Sn , 求证:
.
参考答案:
【答案】解:(I)数列{an}满足
,(n∈N+). ∴n≥2时,a1+3a2+…+3n﹣2an﹣1=
,相减可得:3n﹣1an=
,∴an=
.
n=1时,a1=
.
综上可得:an=
.
(II)证明:
,
∴b1=
=
.
n≥2时,bn=
=
.
∴Sn=
+
+
+…+ ![]()
=
+
< ![]()
【解析】(I)数列{an}满足
,(n∈N+).n≥2时,a1+3a2+…+3n﹣2an﹣1=
,相减可得:3n﹣1an=
,可得an . n=1时,a1=
.(II)
,b1=
.n≥2时,bn=
=
.利用裂项求和方法与数列的单调性即可得出.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系
;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知f(x)=x2(1nx﹣a)+a,则下列结论中错误的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B,C,D为平面四边形ABCD的四个内角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,则四边形ABCD面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题: ①对任意实数k和θ,直线l和圆M有公共点;
②对任意实数k,必存在实数θ,使得直线l和圆M相切;
③对任意实数θ,必存在实数k,使得直线l和圆M相切;
④存在实数k和θ,使得圆M上有一点到直线l的距离为3.
其中正确的命题是(写出所以正确命题的编号) -
科目: 来源: 题型:
查看答案和解析>>【题目】哈六中在2017年3月中旬举办了一次知识竞赛,经过层层筛选,最后五名同学进入了总决赛.在进行笔答题知识竞赛中,最后一个大题是选做题,要求参加竞赛的五名选手从2道题中选做一道进行解答,假设这5位选手选做每一题的可能性均为
. (Ⅰ)求其中甲乙2位选手选做同一道题的概率.
(Ⅱ)设这5位选手中选做第1题的人数为X,求X的分布列及数学期望. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,
. 
(1)求证:BC⊥平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB二面角的平面角为θ(θ≤90°),试求cosθ的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】己知抛物线C1:x2=2py(p>0)与圆C2:x2+y2=5的两个交点之间的距离为4. (Ⅰ)求p的值;
(Ⅱ)设过抛物线C1的焦点F且斜率为k的直线与抛物线交于A,B两点,与圆C2交于C,D两点,当k∈[0,1]时,求|AB||CD|的取值范围.
相关试题